FoxO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleo-cytoplasmic shuttling.
نویسندگان
چکیده
Forkhead members of the 'O' class (FoxO) are transcription factors crucial for the regulation of metabolism, cell cycle, cell death and cell survival. FoxO factors are regulated by insulin-mediated activation of PI3K (phosphoinositide 3-kinase)-PKB (protein kinase B) signalling. Activation of PI3K-PKB signalling results in the phosphorylation of FoxO factors on three conserved phosphorylation motifs, which are essential for the translocation of FoxO factors from the nucleus to the cytosol. FoxO6, however, remains mostly nuclear due to the fact that its shuttling ability is dramatically impaired. FoxO1, FoxO3 and FoxO4 all contain an N- and C-terminal PKB motif and a motif located in the forkhead domain. FoxO6 lacks the conserved C-terminal PKB motif, which is the cause of the shuttling impairment. Since FoxO6 can be considered constitutively nuclear, we investigated whether it is also a constitutively active transcription factor. Our results show that FoxO6 transcriptional activity is inhibited by growth factors, independent of shuttling, indicating that it is not constitutively active. The PKB site in the forkhead domain (Ser184) regulated the DNA binding characteristics and the N-terminal PKB site acted as a growth factor sensor. In summary, FoxO6 is not a constitutively active transcription factor and can be regulated by growth factors in a Thr26- and Ser184-dependent manner, independent of shuttling to the cytosol.
منابع مشابه
Nucleo-cytoplasmic shuttling dynamics of the transcriptional regulators XYR1 and CRE1 under conditions of cellulase and xylanase gene expression in Trichoderma reesei
Trichoderma reesei is a model for investigating the regulation of (hemi-)cellulase gene expression. Cellulases are formed adaptively, and the transcriptional activator XYR1 and the carbon catabolite repressor CRE1 are main regulators of their expression. We quantified the nucleo-cytoplasmic shuttling dynamics of GFP-fusion proteins of both transcription factors under cellulase and xylanase indu...
متن کاملSplicing Factor Hslu7 Contains a Unique Functional Domain Required to Retain the Protein within the Nucleus. Running Title: Nucleo-cytoplasmic Shuttling of Hslu7
Precursor-mRNA splicing removes the introns and ligates the exons to form a mature mRNA. This process is carried out in a spliceosomal complex containing more than 150 proteins and five small nuclear ribonucleoproteins. Splicing protein hSlu7 is required for correct selection of the 3' splice site. Here we identify by bioinformatics and mutational analyses three functional domains of the hSlu7 ...
متن کاملP-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel
Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...
متن کاملNuclear effects of G-protein receptor kinase 5 on histone deacetylase 5-regulated gene transcription in heart failure.
BACKGROUND G-protein receptor kinases (GRKs) modulate cardiac β-adrenergic signaling. GRK5 is upregulated in heart failure, and a gain-of-function polymorphism substituting leucine for wild-type glutamine at amino acid 41 (GRK5-Leu41) is associated with improved outcomes in heart failure and hypertension. GRK5 is distinguished by partial nuclear localization and class II histone deacetylases (H...
متن کاملNucleo-cytoplasmic shuttling of Id2, a negative regulator of basic helix-loop-helix transcription factors.
Id proteins function as negative regulators for basic helix-loop-helix transcriptional factors that play important roles in cell fate determination. They preferentially associate with ubiquitously expressed E proteins of the basic helix-loop-helix family and prevent them from binding to DNA and activating transcription. Although their small size suggests that Id proteins enter and exit the nucl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 391 Pt 3 شماره
صفحات -
تاریخ انتشار 2005